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Lecture 11

• Formalization of Statistical Models

• Offset Voltages



String DAC Statistical Performance

INLk assumes a maximum variance at mid-code
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Current Steering DAC Statistical Characterization
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Note this is the same result as obtained for the unary DAC

But closed form expressions do not exist for the INL of this DAC since the 

INL is an order statistic  
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Statistical Modeling of Current Sources
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Thus
Often only Aβ is available

where Aµ,ACox,AVT0 are Pelgrom

process parameters
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Statistical Modeling of Current Sources
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• Standard deviation decreases with 

• Large VEB reduces standard deviation

• Operating near cutoff results in large mismatch

• Often threshold voltage variations dominate mismatch
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Theorem:  If the random part of two uncorrelated current sources I1 and I2
are identically distributed with normalized variance,             then the random 

variable ΔI=I2-I1 has a variance given by the equation 
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Statistical Modeling of Circuits
The previous statistical analysis was somewhat tedious

Will try to formalize the process for obtaining two important statistics, the 

mean and variance, of a function of interest

Assume Y is a function of  n uncorrelated random variables  xR1,…xRn where 

the mean and variance of xRi are “small”
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pdf of the random part of Y is invariably highly nonlinear joint function of a large 

number of random variables 

Since random variables are invariably small, will try to linearize the dependence 

of the random variables on Y and use previous theorem to obtain µ and  σ
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Statistical Modeling of Circuits
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where                                is due to higher-order terms and is small   ( )1 2, ,...R R Rnx x x

Assuming means are all  0,     Y can be expressed in a 

Taylor’s series expanded around mean as



Statistical Modeling of Circuits
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Statistical Modeling of Circuits
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Statistical Modeling of Circuits
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Y is any function of interest

Determined by Circuit

Determined by Process

( )1 2, ,...R R Rnx x x Random part of process parameters

• Determine sensitivity function by analyzing circuit

• Determine variances by characterizing process

This approach is a formalized approach to statistical analysis that 

is more systematic than the ad hoc approach used in last lecture 

Will now focus on characterizing the process parameters
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Claim:
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where Aµ is the Pelgrom matching parameter and A is the gate area
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where the channel has been partitioned into N disjoint regions each of area Aki

For convenience, assume  Aki=Akj =Ak for all i,j

Consider first the mobility
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Statistical Simulations

Often simulations are used to predict statistical performance of a circuit 

Variable of interest are often Gaussian  (e.,g. RR, CR, VOSR, IR,….)

Most CAD tools do not have a rich set of random variable distributions 

(maybe not even the Gaussian distribution)

Many tools only have a single random variable generator that is U [0,1]  
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CDF showing  random variable mapping of x1 from U(0,1)

Theorem:  f(y) and F(y) are any pdf/cdf pair and 

if X~ U[0,1], then                 has a pdf of f(y).( )1y F x−=
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Theorem:  If  y~N[0,1], then  z = σy+µ is N[µ,σ]
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Some useful relationships:
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Example:  Determine the area required for the 

resistors for an n-bit R-string DAC to achieve 

a yield of P if the device is marketable 
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Since there are N=2n resistors, total area becomes
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Offset Voltages

All ADCs have comparators and many ADCs and DACs 

have operational amplifiers

The offset voltages of both amplifiers and comparators are random variables 

and invariably are key factors affecting the performance of a data converter

Operational Amplifiers:

Generally differential amplifiers whose offset is dominantly 

determined by randomness in the first stage  

Comparators:

High Gain Operational Amplifiers

Latching Structures (often clocked)

Combination of High Gain Amplifiers and Latching Structures

• Offset voltages of high-gain amplifiers well understood

• Offset voltage of Latching Structures often difficult to determine and can be very large



Consider First Offset in Operational Amplifiers

Input-referred Offset Voltage:   Differential Voltage that 

must be applied to the input to make the output assume 

its desired value

With a good design, a designer will have VOUT at the desired value if the 

components assume the values used in the design

Any difference in the output from what is desired when components assume 

the nominal values used in a design is attributable to a systematic offset 

voltage 

Differential 
Amplifier

VOUT
V1

V2



• Systematic Offset Voltage

• Random Offset Voltage   

Offset Voltage

VICQ

VOUT

Definition:   The output offset voltage is the difference between the desired 

output and the actual output when Vid=0 and Vic is the quiescent common-

mode input voltage.

OUTOFF OUT OUTDESV  = V  - V

Note:  VOUTOFF is dependent upon VICQ although this dependence is 

usually quite weak and often not specified

Two types of offset voltage:



Offset Voltage

Definition:   The input-referred offset voltage is the differential dc input voltage 

that must be applied to obtain the desired output when Vic is the quiescent 

common-mode input voltage.

VICQ

VOUT

VOFF

Note:  VOFF is usually related to the output offset voltage by the expression

OUTOFF
OFF

D

V
V =

A
Note:  VOFF is dependent upon VICQ although this dependence is 

usually quite weak and often not specified



• Systematic Offset Voltage

• Random Offset Voltage   

Offset Voltage

VICQ

VOUT

After fabrication it is impossible (difficult) to distinguish between the

systematic offset and the random offset in any individual op amp

Measurements of offset voltages for a large number of devices will

provide mechanism for identifying systematic offset and statistical

characteristics of the random offset voltage



Systematic Offset Voltage

Random Offset Voltage   

Offset voltage that is present if all device and model parameters

assume their nominal value

Easy to simulate the systematic offset voltage

Almost always the designer’s responsibility to make systematic 

offset voltage very small

Generally easy to make the systematic offset voltage small

Can tweak out systematic offset after design is almost done

Due to random variations in process parameters and device dimensions

Random offset is actually a random variable at the design level but

deterministic after fabrication in any specific device

Distribution of native offset nearly Gaussian (If offset compensation is not employed)

Has zero mean

Characterized by its standard deviation or variance

Often strongly layout and area  dependent



Offset Voltage

VOS

Can be modeled as a dc voltage source in series with the input (on 

either terminal)



Offset Voltage

VM
t

VDD

VIN
VOUT

VIN VOUT

R2
R1

Effects of Offset Voltage  - an example

Desired I/O relationship



Offset Voltage

VM
t

VDD

VIN
VOUT

VIN VOUT

R2
R1

Effects of Offset Voltage  - an example

Desired I/O relationship
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VIN

VOUT

VM

t

VDD
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VOUT

Actual I/O relationship due to offset



Offset Voltage

Effects can be reduced or eliminated by adding equal amplitude opposite

phase DC signal  (many ways to do this)

One such technique is “dynamic offset compensation”

Another is chopper stabilization

Widely used in offset-critical applications

Comes at considerable effort and expense

VOS

VOS

Prefer to have designer  make VOS small in the first place though penalty (e.g. 

cost) for making it sufficiently small without correction is often unacceptable 



Dynamic Offset Compensation

VOS

VOS

Most basic dynamic offset compensation at input



Effects of Offset Voltage

• Deviations in performance will change from one 

instantiation to another due to the random component 

of the offset

• Particularly problematic in high-gain circuits

• A major problem in many other applications

• Not of concern in many applications as well



Offset Voltage Distribution

1 2 3 4 5 6-1-2-3-4-5-6

number

Offset Voltage Bins

Typical histogram of native offset voltage (binned) after fabrication



Offset Voltage Distribution

1 2 3 4 5 6-1-2-3-4-5-6

number

Offset Voltage Bins

Gaussian

(Normal) pdf

Typical histogram of offset voltage (binned) after fabrication

Mean is nearly 0 (actually the systematic offset voltage)



Offset Voltage Distribution

1 2 3 4 5 6-1-2-3-4-5-6

number

Offset Voltage Bins

Typical histogram of offset voltage (binned) in shipped parts when 

entire population used for a single produce

Extreme offset parts have been sifted at test



Offset Voltage Distribution

Typical histogram of offset voltage (binned) in shipped parts

Low-offset parts sold at a premium

Extreme offset parts have been sifted at test

1 2 3 4 5 6-1-2-3-4-5-6

number

Offset Voltage Bins



Source of Random Offset Voltages

Consider as an example: VDD

VSS

R1 R2

M1 M2

VOUT

IT

Ideally R1=R2=RN, M1 and M2 are matched

 
 
 

T
OUT DD N

I
V  = V - R

2

Assume this is the desired output voltage  (note not assuming VOUT-DES=0V) 

Assume VINCOM=0V  (could consider different common-mode inputs) 



Source of Random Offset Voltages

Consider as an example: VDD

VSS

R1 R2

M1 M2

VOUT

IT

If everything ideal except R1 and R2

   
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T
OUT DD R2N

I
V  = V - R +R

2

 
 
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T
OUT-R R2

I
V  = - R

2

R1=RN+RR1 R2=RN+RR2

Thus at the design stage, VOUT is also a random variable



Source of Random Offset Voltages

Consider as an example: 

VDD

VSS

R1 R2

M1 M2

VOUT

IT

VDD

VSS

R1 R2

M1 M2

VOUT

IT

-Vd/2 Vd/2 

m
VN N

g
A  = - R

2



Source of Random Offset Voltages

Determine the offset voltage – i.e. value of VX needed to obtain desired output

m
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T
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I
V - R

2
V =

Setting VOUT=VOUT-DES and solving for VX, we obtain



Source of Random Offset Voltages

Determine the offset voltage – i.e. value of VX needed to obtain desired output

m
V
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IT

VX

As conjectured, VOFF is a random variable!



Source of Random Offset Voltages

Determine the offset voltage – i.e. value of VX needed to obtain desired output

R2
OFF EB

N

R
V  = V

R

OFF R2

N

V EB R

R

 = V 

VDD

VSS

RN+RR1 RN+RR2

M1 M2
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IT

VX

If resistors are integrated                          where AR is the Pelgrom parameter 

and A is the resistor area 
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Source of Random Offset Voltages

The random  offset voltage is almost entirely that of the input stage in most op amps

M1 M2

M3 M4

V2

VX

VS

IT

(a)

M1 M2

M3 M4

VDD

V1
V2

VX

VS

IT

(b)

V1

VDD

VOUT
VOUT



Random Offset Voltages
Gate DrainSource 

Bulk

n-channel MOSFET

Gate DrainSource 

Bulk

n-channel MOSFET

Impurities vary randomly with position as do edges of gate, oxide and diffusions

Model and design parameters vary throughout channel and  thus the corresponding 

equivalent lumped model parameters will vary from device to device 



Random Offset Voltages

M1 M2

M3 M4

V2

VX

VS

IT

V1

VDD

VOUT

The random offset is due to missmatches in the 

four transistors, dominantly  missmatches in the 

parameters {VT, μ,COX,W and L}

The relative missmatch effects become more 

pronounced as devices become smaller

VTi=VTN+VTRi

COXi=COXN+COXRi

μi=μN+μRi

Wi=WN+WRi

Li=LN+LRi

Each design and model parameter is comprised of a nominal part and 

a random component



Random Offset Voltages

M1 M2

M3 M4

V2

VX

VS

IT

V1

VDD

VOUT

VTi=VTN+VTRi

COXi=COXN+COXRi

μi=μN+μRi

Wi=WN+WRi

Li=LN+LRi

( )( )( )

( )
( ) ( ) ( )2N Ri OXN OXRi N Ri

 Di GSi TN TRi N Ri DS
N Ri

μ μ C C W +W
I  = V -(V V ) 1+ λ +λ V

2 L L

+ +
+

+

For each device, the device model is often expressed as

Because of the random components of the parameters in every device, matching

from the left-half circuit to the right half-circuit is not perfect

This mismatch introduces an offset voltage which is a random variable



Offset Voltages

Assume currents at output node must satisfy relation    I2=I4

1)  Obtain expression for VOFF (referred to input) that forces I2=I4
2) Linearize expression in terms of design variables and decorrelate

3) Obtain  σVOS

Strategy:

M1 M2

M3 M4

VDD

VOUT

VINC

RL

IT

I1 I2

I3 I4

VXX

VX

VS

VINC

VOFF

(this is equivalent to assuming desired output voltage is VXX in this circuit) 



Analysis of Offset Voltage (Neglect RL)

1 3D DI I=Since

2 4D DI I=Since

( )

( )

( )

( )

2n1 OX1 1
D1 INC S TH1

1

2n2 OX2 2
D2 INC S TH2

2

2p3 OX3 3

D3 X DD TH3

3

2p4 OX4 4

D4 X DD TH4

4

μ C W
I = V +V -V -V

2L

μ C W
I = V -V -V

2L

μ C W
I = V -V -V

2L

μ C W
I = V -V -V

2L

OFF

M1 M2

M3 M4

VDD

VOUT

VINC

RL

IT

I1 I2

I3 I4

VXX

VX

VS

VINC

VOFF

( )p3 OX3 3 1

INC S TH1 X DD TH3

n1 OX1 1 3

μ C W L
V +V -V -V = V -V -V

μ C WL
OFF

( )p4 OX4 4 2

INC S TH2 X DD TH4

n2 OX2 2 4

μ C W L
V -V -V = V -V -V

μ C W 2L



Analysis of Offset Voltage

Define:
1 3 3 3

3 1 1 1

p OX

n OX

L C W
a

L C W




=

2 4 4 4

4 2 2 2

p OX

n OX

L C W
b

L C W




=

1,2

3,4

X XN XR

N R

N R

Tni TnN TnRi

Tpi TpN TpRi

V V V

a a a

b b b

V V V i

V V V i

= −

= +

= +

= + =

= + =

Assume

Substituting for a and b, it follows on eliminating VS that 

   
−

= + +2 2 2 2 2 2

32 2
OFF TnR TpR a bR R

V V N V EB N Va V

Observe  aN=bN and VXN-VDD-VTpN=VEB3N

Will now obtain aR and bR

( )( )1 2 EB3N TH4 TH3V V VOFF TH THV V V a b b a= − + − + −

( )( )1 2 X DD TH4 TH3V -V V V= − + − + −OFF TH THV V V a b b a

Since the random part of VX multiplies only a-b which is small, it follows that 

M1 M2

M3 M4

VDD

VOUT

VINC

RL

IT

I1 I2

I3 I4

VXX

VX

VS

VINC

VOFF

( ) ( )= − + − + −1 2 3 4 3OFF THR THR R R EB N N THR THRV V V a b V a V V



Analysis of Offset Voltage

( ) ( )= − + − + −2 2 3 3 4OFF TnR TnR R R EB N TpR TpRV V V b a V a V V

( )( )( )( )

( )( )( )( )
1 1 3 3 3 3 3 3

3 3 1 1 1 1 1 1

N R Np R OXN OXR N R

N R Nn R OXN OXR N R

L L C C W W
a

L L C C W W

 

 

+ + + +
=

+ + + +

Recall for x small, 1 1
2

x
x+  +

1
1

1
x

x
 −

+

( )
( )

1 3 3 4 22 4 4 2 4 2

3 1 1 2 4 4 2 4 2 4 2

1

2

N Np N OXR OXRR R R R R R
R

N Nn N N N Np Nn OXN OXN N N

L W C CL L W W
b

L W L L C C W W

  

  

 
= − + − + − + − 

  

Likewise

( )
( )

1 3 3 3 3 3 1 3 31 1

3 1 1 1 3 3 1 3 1 3 3

1
1

2

N Np N R R OXR OXR R RR R

N Nn N N N Np Nn OXN OXN N N

L W L C C W WL
a

L W L L C C W W

  

  

  
 = + − + − + − + − 
    

Thus

( )
( )

1 3 3 3 3 3 1 3 31 1

3 1 1 1 3 3 1 3 1 3 3

1

2

N Np N R R OXR OXR R RR R
R

N Nn N N N N N OXN OXN N N

L W L C C W WL
a

L W L L C C W W

  

  

 
= − + − + − + − 

 

( )
( )

1 3 3

3 1 1

N Np N

N

N Nn N

L W
a

L W




=

M1 M2

M3 M4

VDD

VOUT

VINC

RL

IT

I1 I2

I3 I4

VXX

VX

VS

VINC

VOFF



Analysis of Offset Voltage

( )
( )

3 31 2 4 4 2 1

1 3 3 1 2 4 3 3 4 2 1

3 1 1 3 4 2 1 3 34 2

3 4 2 1 3 4 2 3

1

2

R RR R R R R R

N Np N N N N N Np Np Nn Nn

R R

N Nn N OXR OXR OXR OXR R RR R

OXN OXN OXN OXN N N N N

LL L L

L W L L L L
a b

L W C C C C W WW W

C C C C W W W W

   

    



 
− + − + − + − 

 − =
 
+ − + − + − + − 
  

( )
( ) 1 3 3 2 3 1 3 1

1 2 13 3 3 1 3

1 3 32 2 2 2 2 2 2 2 2

3 1 1

1

2R R R R R R OXR OXR R R

N Nn NN Np OXN OXN N

N Np N

a b L L C C W W

N Nn N L WL C C W

L W

L W
 




        


−

 
 = + + + + + + +
  

( )
( )

2 3

1 3 3 2 3 1 3 1

1 2 13 3 3 1 3

1 3 32 2 2

3 1 1

1 3 32 2 2 2 2 2 2 2 2

3

3 1 1

2 2

1

2

= +

 
 + + + + + + + +
  

 




  




       



OFF TnR TpR

R R R R OXR OXR R R

N Nn NN Np OXN OXN N

N Np N

V V V

N Nn N

N Np N

EB N L L C C W W

N Nn N L WL C C W

L W

L W

L W
V

L W

Thus

M1 M2

M3 M4

VDD

VOUT

VINC

RL

IT

I1 I2

I3 I4

VXX

VX

VS

VINC

VOFF



Analysis of Offset Voltage

22 2 2 2
2 2 2 2 20

2 2

2 2
T R OXR R R

N N NOXN

VT Cox L W
V C L W

L WC

AA A A A

WL WL WL WL W L







    = = = = =












= +

      
+ + + + + + + +      

       

22
1 02 0

2

1 1 1 3

22

1 32 2 2 2

3 2 2 2 2

3 1 3 3 1 1 3 3 1 1 3 3 1 1 1 1 3 3

2 2

1 1 1 2 2 2 2

2

OFF

pn

p VTpVTn
V

n

p

EB Cox W L

n

L AA

W L W L

AALW
V A A A

L W W L W L W L W L W L W L W L W L

but

So the offset variance can be expressed as (dropping the “N”notation)

Often this can be approximated by 

 


 

  
= + + + + +  

   

2222
1 0 1 32 2 20

32

1 1 1 3 3 1 3 3 1 1 3 3 1 1

1 1 1
2 2

2

pn

OFF

p VTp pVTn
V EB Cox

n n

AAL A LWA
V A

W L W L L W W L W L W L W L

Or even approximated by





= +

22
1 02 0

2

1 1 1 3

2 2
OFF

p VTpVTn
V

n

L AA

W L W L

M1 M2

M3 M4

VDD

VOUT

VINC

RL

IT

I1 I2

I3 I4

VXX

VX

VS

VINC

VOFF



Random Offset Voltages

n p

OS

2 2 2
COX μ  μ2 2 n n  p p  n  n  p  p p2 2VTO n  n EB n

VTO pV 2
 n n n n p 2 2

 w L 2 2 2 2
 n  n p  p  n  n  p  p

1 1 1 1
A + A +A +

W L W L W L W LA μ VL
σ 2 + A +

W L μ 4W L 1 1 1 1
+2A + +A +

W L W L L W L W

   
   
    
  =

     
     

          

OS

2
 p2 2 VTO n  n

 VTO pV 2
 n  n  n  n  p

A μ L
σ 2  + A

W  L μ W  L

 
 
 
 

M1 M2

M3 M4

V2

VX

VS

IT

V1

VDD

VOUT

3

2

OX

VT0

2 2
μ C

L W

21mV•μ (n-ch)
A

25mV•μ (p-ch)

.016μ (n-ch)
A +A

.023μ (p-ch)

A =A 0.017μ









Since VEBn and VEBp are related, this is often expressed in simpler form as:

where the terms AVT0, Aμ, ACOX, AL, and AW are process parameters

Usually the AVT0 terms are dominant, thus the variance simplifies to 

Representative values of Pelgrom parameters (0.5µ process)



Random Offset Voltages

OS

2
 p2 2 VTO n  n

 VTO pV 2
 n  n  n  n  p

A μ L
σ 2 + A

W  L μ W  L

 
 
 
 
























































++












++












+++

+



+=



2

pp

2

nn

2

w2

pp

2

nn

2

L

ppnn

2

COX

2

pp

2

nn
2

EBn2

VTOp2

pn

n

n

p

nn

2

VTOn2

V

WL

1

WL

1
A

LW

1

LW

1
A2

LW

1

LW

1
AA

LW

1
A

LW

1

4

V
A

LW

L

LW

A
2

pn

OS

M1 M2

M3 M4

VDD

V1
V2

VX

VS

IT

VOUT

Correspondingly for 5T op amp w/o current mirror load:

which again simplifies to

Note these offset voltage expressions are identical!



Random Offset Voltages

OS

2
 p2 2 VTO n  n

 VTO pV 2
 n  n  n  n  p

A μ L
σ 2 + A

W  L μ W  L

 
 
 
  M1 M2

M3 M4

VDD

V1
V2

VX

VS

IT

VOUT

Example:  Determine the 3σ value of the input offset voltage for 

the MOS differential amplifier if 

a) M1 and M3 are minimum-sized and 

b) the area of M1 and M3 are 100 times minimum size

OS

 p2 2 2
 VTO n  VTO pV

 n  n  n

μ2
σ A + A

W  L μ

 
  

 

a)

( )OS

2  2  2
  V 2

2 1
σ .021 + .025

30.5

 
   

72
OSV

σ mV

216
OSV

3 σ mV

Note this is a very large offset voltage !

Assume LMIN=WMIN=0.5u, AVTOn=0.021V and AVTOP=0.025V 

Will neglect µR, COXR, WR and LR on all devices



Random Offset Voltages

OS

2
 p2 2 VTO n  n

 VTO pV 2
 n  n  n  n  p

A μ L
σ 2 + A

W  L μ W  L

 
 
 
 

M1 M2

M3 M4

VDD

V1
V2

VX

VS

IT

VOUT

Example:  Determine the 3σ value of the input offset voltage for 

the MOS differential amplifier if 

a) M1 and M3 are minimum-sized and 

b) the area of M1 and M3 are 100 times minimum size

OS

 p2 2 2
 VTO n  VTO pV

 n  n  n

μ2
σ A + A

W  L μ

 
  

 
b)

( )100 

 
     

OS

2  2  2
  V 2

2 1
σ .021 + .025

30.5

7.2
OSV

σ mV

21.6
OSV

3 σ mV

Note this is much lower but still a large offset voltage !

The areas of M1 and M3 need to be very large to achieve a low offset voltage !!

Assume LMIN=WMIN=0.5u, AVTOn=0.021V and AVTOP=0.025V



Random Offset Voltages

VX

Q4

VCC

V1

IT

V2

Q3

Q2Q1

VE

VX

Q4

VCC

V1

IT

V2

Q3

Q2Q1

VE

(a) (b)

2
22
Jp2 Jn

t
En Ep

AA
2V +

A A


 
 
 
 

OSV

Jn JpA  = A  = 0.1μ

where very approximately

It can be shown that 



Random Offset Voltages

2
22
Jp2 Jn

t
En Ep

AA
2V +

A A


 
 
 
 

OSV

VX

Q4

VCC

V1

IT

V2

Q3

Q2Q1

VE

Example:  Determine the 3σ value of the offset voltage

of  this  bipolar input stage if AE1=AE3=10μ2

2 t J
E

2
V A

A
 

OSV

2

1
2 25mV 0.1μ 1.6mV

10μ

  • • • =
OSV

3 4.7mV 
OSV

Note this value is much smaller than that for the MOS input structure !



Random Offset Voltages

Typical offset voltages:

MOS - 5mV to 50MV

BJT - 0.5mV to 5mV

These can be scaled with extreme device dimensions

Often more practical to include offset-compensation circuitry 



Offset Voltage in Comparators

Op Amp Comparator

• Op Amps Can be used as Comparators

• Comparators often have hysteresis in transfer characteristics

• Offset voltage of Comparators often key parameter in data 

converters



VIN VREF

M3 M4

M5 M6

M7 M8

VDD

C1
C2

V1V2

1

1 1

1M11 M12

M13 M14

Offset voltage difficult to determine in come classes of comparators

Dynamic clocked comparator

When φ1 is low, V1 and V2 are precharged to VDD and no static power is dissipated

When φ1 is high, enters evaluate state and no static power is dissipated



VIN VREF

M3 M4

M5 M6

M7 M8

VDD

C1
C2

V1V2

1

1 1

1M11 M12

M13 M14

Offset voltage difficult to determine in come classes of comparators

Dynamic clocked comparator

Very small, very fast, low power

But offset voltage can be large (100mV or more)

CLK

Transition

V1 or V2

V2 or V1

Metastable Output

H

L

Decision is being made shortly after clock transition when devices are deep in 

weak inversion and signal levels are very small



VIN VREF

M3 M4

M5 M6

M7 M8

VDD

C1
C2

V1V2

1

1 1

1M11 M12

M13 M14

Dynamic Comparators

CLK

Transition

V1 or V2

V2 or V1

Metastable Output

H

L

Still major opportunities to make significant improvement in dynamic comparators

Dynamic Comparators widely used because of low power dissipation 

Often include one or more pre-amp stages before regeneration applied 

Previous-code dependence and kickback both of concern in dynamic comparators

Noise may significantly affect performance and difficult to analyze and simulate 

because transient noise models in deep weak inversion are questionable



VIN VREF

M3 M4

M5 M6

M7 M8

VDD

C1
C2

V1V2

1

1 1

1M11 M12

M13 M14

Dynamic Comparators

Relatively small number of dynamic comparators have been introduced

Significant difference in performance among those available

Analysis and performance assessment either analytically or via simulation not 

trivial  

Opportunity to make significant advances in dynamic comparator design 

likely available



Additional details about offset voltage, 

statistical circuit analysis, and matching 

can be found in the draft document

“Statistical Characterization of Circuit Functions” 

by R.L. Geiger



Summary of Offset Voltage Issues
• Random offset voltage is generally dominant and due to 

mismatch in device and model parameters

• MOS Devices have large VOS if area is small

• σ decreases approximately with 

• Multiple fingers for MOS devices offer benefits for 
common centroid layouts but too many fingers will 
ultimately degrade offset because perimeter/area ration 
will increase (AW and AL will become of concern)

• Offset voltage of dynamic comparators is often large and 
analysis not straightforward

• Offset compensation often used when low offsets 
important

1/ A

OS

2
 p2 2 VTO n  n

 VTO pV 2
 n  n  n  n  p

A μ L
σ 2 + A

W  L μ W  L

 
 
 
 

2
22
Jp2 Jn

t
En Ep

AA
2V +

A A


 
 
 
 

OSV

MOS:

Bipolar:



Stay Safe and Stay Healthy !



End of Lecture 11


